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Partition functions of critical 2D models on a torus can be derived from their 
microscopic formulation and their free field representation in the cont inuum 
limit. This is worked out  explicitly for the O(n) and Q-state Potts model. For n 
or Q integer we recover results obtained from conformal invariance, but  our 
procedure also extends to nonintegral values. In the latter case the expansion on 
characters of the Virasoro algebra involves real coefficients of either sign. The 
operator content of both models is discussed in detail. 
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1. I N T R O D U C T I O N  

Two-dimensional critical models have been studied recently using two dif- 
ferent approaches. On one hand, conformal invariance has proved to be a 
very strong constraint. (~,2) On the other hand, it is well known (3~ that most 
two-dimensional models renormalize at criticality onto a Gaussian free- 
field theory (Coulomb gas). This property has been mainly used so far to 
compute exact critical exponents (see Ref. 4 for a review), but it is probably 
deeply related to the conformal invariance approach. Indeed, Dotsenko 
and Fateev (5) have shown that the existence of a nonzero four-point 
correlation function in a free field theory supplemented by a charge at 
infinity leads naturally to dimensions given by the Kac formula, and that 
the introduction of the so-called screening operators allows explicit com- 
putations. Also, Nienhuis and Knops (6) have discussed the physical inter- 
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pretation and Coulomb gas construction of spinor operators for the Potts 
model, which were first obtained by conformal invariance considerations. 

In this work, we want to make these relations more precise by con- 
sidering partition functions on a torus. The torus g is defined by two 
periods o)1, co2. For  models with a transfer matrix one can write (7) 

Z = Tr(q L~ c/24~/~0- c/24) (1.1) 

where ~ = (.02/(.0 1 = 72 R + i"( 1 is the modular ratio and q = exp(2i~v). Decom- 
posing the trace on the various irreducible representations of the two 
Virasoro algebras gives 

z = (1.2) 

the nonnegative integer Nh~ representing the multiplicity of the operator 
with dimensions h,/~. The constraint of modular invariance leads then to a 
classification of families of possible partition functions. (8 lo) For the three- 
state Potts model, for instance, the knowledge of the central charge and a 
few dimensions allowed Cardy (7) to determine completely Z, and thus the 
whole operator content of the theory. We show in the following that such 
expressions for Z can in fact be derived starting from the microscopic 
definition of the model, and using its mapping onto a Coulomb gas. 

In Section 2 we consider the XY and F models. Both have c = 1, and 
can be described by a free field with defect lines on a torus. Their partition 
functions are thus simply the Coulombic partition functions we introduced 
in a preceding work (11) (see also Ref. 12). 

In Section 3 and 4 we work out in detail the O(n) and Q-state Potts 
models. Since the corresponding central charges are smaller than 1, the 
construction of Z implies an additional "floating" electric charge, which is 
the equivalent of the charge at infinity in Refs. 5 and 13. We recover 
already known results for n, Q integer. For  n, Q E ~, we obtain expressions 
similar to (1.2), but with real and even negative coefficients, which seems to 
imply the absence of a transfer matrix formulation. The operator content is 
discussed in detail; it reproduces in particular thermal and magnetic series 
as conjectured by Dotsenko and Fateev. (5~ Section 5 contains a few final 
comments. 

In the Appendix, we show how to reexpress all the minimal partition 
functions of Ref. 10 as linear combinations of Coulombic partition 
functions. 
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2. FREE FIELD F O R M U L A T I O N  

1. It has been known for a long time (3) that most two-dimensional 
statistical mechanics models at criticality renormalize onto a Gaussian free 
field with action 

~ =  g-~f IVq0t2 d2x (2.1) 
4re 

where g is a coupling constant. In the theory (2.1), the basic operators are 
the exponentials of the free field (fie = exp(ie~0), satisfying 

<G(r)  (f i_e(r ' ) )~ I r -  r'[ _e2/g (2.2) 

and the dual operators (tim, the correlation functions of which are obtained 
by imposing a discontinuity of 2rnTc on the field q) when one crosses a line 
connecting r to r', 

((gm(r) (fi_m(r')) ~ [r--r']--gin2 (2.3) 

Since (2.2) or (2.3) can be written as exponentials of the Coulomb inter- 
action l o g ( I t - r ' l ) ,  one refers also to (2.1) as a two-dimensional classical 
Coulomb gas(3): e and m are called, respectively, electric and magnetic 
charges. Combining (2.2) and (2.3), one gets a more general object Gm, 

((fiem(r) 0 e m(r')) ~ Ir--r ' l  &g_gm2 e x p [ - - 2 i e m ~ ( r - - r ' ) ]  (2.4) 

where : f i r -  r') is the angle of the r -  r '  vector with an arbitrary direction. 
Thus (fiem has a dimension x and a spin s given by 

Xem ~ - - -  e2/2g + gm2/2,  Sere = em (2.5) 

We recall also the existence of a duality transformation (3) for (2.1), 
which has the effect 

g --* 4/g, (fie,* --* (fiZm,en, X, S unchanged (2.6) 

2. So far, the mapping of discrete models onto (2.1) was mainly used 
to calculate critical exponents. This requires the knowledge of the renor- 
malized coupling constant g and the formulation of the operators one 
wants to study in terms of (fiem (see Ref. 4 for a review). In Ref. 11 we 
started to use this mapping to determine also the continuum limit of 
partition functions on a torus, an object much studied recently in the light 
of conformal invariance. (7 s0) 
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For a free field on a torus 51-, with the action as in (2.1) integrated over 
~-, a properly renormalized expression for the partition function 

Zl(g)  = fr periodic [Dtp] e -~ '  (2.7) 

~/~(q) ~(~) 

is (s) 

Z ~ ( g )  -= 

q is the Dedekind function 

(2.8) 

tl(q)=q 1/24 ]] (1--qN), q=exp(2izz) (2.9) 
N = I  

The dependence on the coupling constant g comes from the existence of a 
zero mode, the subtraction of which forbids the rescaling of ~0. 

Z 1 enjoys the important property of modular invariance, i.e., 
invariance under the modular group 

az+b 
z - - - , - -  a ,b , c ,d~Z ,  a d - b c = l  (2.10) 

c~+d'  

The behavior at small q (cylinder limit) (13'14) 

Z,,~(qs ) , /24,  q ~ 0  (2.11) 

is in agreement with the value c = 1 for the central charge of the Gaussian 
free field. 

However, most models have a partition function more complicated 
than (2.8). This is due in part to special boundary conditions in (2.7) which 
are generated by the mapping onto (2.1). Consider, for instance, the X Y  
model, (15) defined by the action 

l 
~ r  Z Sj.S~ (2.12) 

( j k  ) 

where S is a two-component unit vector, and the sum is taken over nearest 
neighbor pairs of a regular lattice. It is known that in the whole low-tem- 
perature critical phase T~< T C, vortices remain bound and (2.12) maps onto 
(2.1), which corresponds to a spin-wave approximation with a renor- 
malized temperature. (16) On a torus, however, vortex lines that are wrap- 
ped along noncontractible loops remain in the continuum limit. For a 
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variation of angle equal to 272m (2~m') along (_o 1 ( ( 0 2 )  , the corresponding 
continuum limit is m) 

Zm,,m(g)=fa [D~o] e - d  (2.13) 
1 (P = 2rrm 

c52 r = 2 ~ m '  

In this limit, the vorticity of S is transformed into a discontinuity of the 
field q), referred to as "frustration" in the following. Relation (2.13) is 
readily evaluated (u) using the classical solution (such that Aq)= 0) 

Zm, m(g)= Zl (g  ) exp [-Tzg m'2 + m2(z~ +z~)-z, 2"cRrnm'] (2.14) 

Relation (2.14) is not modular-invariant. One can verify that it transforms 
in the same way as the frustrations 

(az + b'] Z Zm',,,,\C~]= am'+b ..... '+am(Z) (2.15) 

A simple modular-invariant object is then obtained by summing over m, 
m', giving what we have called (u) a Coulombic partition function 

Zc[-g, 1] = ~ Zm',m(g) (2.16) 
m',m ~ 27 

After a Poisson transformation one finds 

1 Zo[g, 1]=~_ Y', q(e/"fg+m'fg)2/4q(e/xfg-mx/g)2/4 
~]~] e,m E Z 

1 qZle,,,~a~m (2.17) =7 2 
where the conformal weights u) (in the c = 1 theory) are given by 

e2 . g 2 
Z~em'aW J e m =  X e m = " ~ g - J - ~  m 

A em - -  A em  = Sern = em 
(2.18) 

For the XY model, the value of the renormalized coupling constant g is 
known (4) at the Kosterlitz-Thouless (KT) point Tc only, where it takes the 
value 4. We thus proposed in Ref. 11 that Z c [4, 1 ] is the corresponding 
partition function on a torus. This agrees with the recent work of Yang (12) 
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on the Ashkin-Teller model, a special point of which is the KT point. This 
approach does not account for logarithmic terms. (15) 

It is worth noticing that the partition function (2.16) describes a 
bosonic free field considered as an angle, i.e., a free field living on a circle. 
As such, this is the simplest instance of the "toroidal compactification" 
extensively used in recent work on string theory./17) Conversely, compac- 
tification on a higher dimensional torus yields other modular-invariant 
functions, which might correspond to interesting statistical mechanical 
models (with c integer > 1). 

3. Another example of interest is the F model, (18) defined by putting 
arrows on the edges of the square lattice with six possible vertex 
configurations (Fig. 1), the Boltzmann weights of the vertices being 
W 1 . . . . .  W4= 1, W5= W6=exp(1/T). The whole high-temperature 
phase I T >  (log 2) ~] is critical and it can be studied by reformulating it 
as a solid on solid (SOS) surface model. (4) For this purpose one simply 
introduces height variables cp on the faces of the square lattice such that 
two neighboring ~0 differ by +~00, the highest being on the left of each 
arrow. Then this SOS model is argued to renormalize onto (2.1) and the 
corresponding coupling constant can be evaluated. The standard choice 
q~0 = re/2 gives (4) 

8 e I/T 
g(T) = -  sin ~ - -  (2.19) 

rc 2 

With this local definition of the variables ~o it is clear that discontinuities 
may be generated on a torus. Preserving the antiferroelectric symmetry of 
the model requires to taking an even number of sites around each period, 
which gives discontinuities of q~ multiple ofm This leads us to the 
expression for the partition function in the continuum limit 

~F(T) ~ 2 ~, Zm',m(g) (2.20) 
m ' , m  ~ 2?/2 

+ + + + + + 
W 2 W 3 W 4 W s W 6 

Fig. 1. The six a|lowed vertices of the F model. 
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i.e., after Poisson transformation 

1 qAem~]Aem ~r(T)--+ Zc[g, �89 ~ (2.21) 
e ~ 2 ~  

m ~ W/2 

The global normalization 2 in (2.20) is introduced simply to give a 
nondegenerate identity operator. 

More generally, we find it convenient to introduce partition functions 
summed over frustration multiples of 2rcf 

Z c [ g , f ] = f  ~, Zm',m(g) =L  2 q,aem~]~em (2.22) 
m ' , m  c . f Z  ql~ e �9 Zl t  

mEfZ 

It has the symmetries 

Zc[g , f ]  =Zc[1/g, 1/f-] = ZcEgf 2, 1] (2.23) 

corresponding to the invariance under (2.6). 

4. We notice, however, that expressions like (2.22) are only relevant 
for models with central charge c--- 1. To describe situations with c < 1 one 
must introduce a pair of electric charges +_eo "at infinity." This is easily 
done on a plane {5) or on a cylinder, {13) with the corresponding modification 

c = 1 - 6e~/g (2.24) 

since the small-q behavior (2.11) is now given by 

(q~)~o,O 1/24 

If one wants to calculate toroidal partition function for c < 1 models 
using their Coulomb gas mapping, it is then necessary to understand how 
these charges can be introduced on a torus. We shall study this question for 
the O(n) or Q-state Potts models (n, Q ~ ~) in the following sections. 

3. P A R T I T I O N  F U N C T I O N S  OF C R I T I C A L  O(n) (ne~) 
M O D E L S  ON A T O R U S  

1. We consider the O(n) model on the honeycomb lattice (4) defined 
initially for n integer by 

1 S 

822/49/1-2-5 
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where S is an n-component vector such that 1S12= n. It can be analytically 
continued to n 6 ff~ using a high-temperature expansion 

~'~n= 2 F/~P (3.2) 
graphs 

In (3.2) the graphs are formed by @ nonintersecting self-avoiding loops 
(or "polygons") of total length Y~. The model is known to be critical for 
n~ [ - 2 ,  2]. It can be transformed into an SOS model (4) by introducing 
height variables q) on the centers of the hexagons. An arbitrarily oriented 
polygon corresponds then to a wall between two regions of constant 
height, with a step + (Po, the highest q~ being on the left of each arrow. The 
Boltzmann weight consists of a factor 1/T for each bond, times e iv (e-iV) for 
each left (right) turn. Then, since the difference between the numbers of left 
and right turns for a polygon on the honeycomb lattice on a plane is 
n t - n~ = +6, one has Y', = ~eso s if n = 2 cos 6v. 

The renormalized coupling constant is then evaluated (4) and for the 
standard choice ~0o = rc one gets 

n =  - 2  cos rcg, g~  [1, 2] (3.3) 

2. On a torus, however, ~n # ~esos, since polygons that wrap around 
it have nt=nr. The above weights thus describe a modified partition 
function (11) 

~en= Z n ~ ? 2 ~  (3.4) 
graphs 

where ~Tp is the number of polygons nonhomotopic to a point. In the SOS 
model, there are also frustrations, exactly as in the F-model case 
(Section 2), leading then to the continuum limit of (3.4) at criticality 

fFn ~ Zc[g, 1/2] =Zc[g/4, 1] (3.5) 

If n = 2, ~2 = ~2. With the previous conventions (3.3), g = 1, we thus find 
~xy--,Zc[1,1/2]=Zc[4,1], in agreement with the above results 
(Section 2). 

In the limit q--*0, the leading contribution to ~e comes from 
configurations with polygons wrapping around the axis of the cylinder. It is 
easy to give them the weight (3.2) by putting charges +eo at infinity (i.e., 
at the two ends of the cylinder) such that n = 2 cos ~e0. This gives (13) 

e0= _+(g-  1) mod 2, c = l - 6 ( g - 1 ) 2 / g  (3.6) 
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Fig. 2. Example of a polygon ~ nonhomotopic to a point, In the natural basis of the torus it 
defines frustrations 61 ~p = 2n, 62q~ = n. 

We now discuss how one can get the correct weights on a torus. For this 
purpose we need two topological properties. 

(i) A non-self-intersecting polygon ~ nonhomotopic to a point 
defines two frustrations 61~o=nln, 62~o=n2n along two independent 
periods ~ol, ~o 2. Then ]nil and [n2[ are coprimes. (Fig. 2) 

(ii) If two unoriented such polygons ~ ,  ~ '  coexist (i.e., do not inter- 
sect) on the torus, then they are homotopic. (Fig. 3) 

Property (i) may be proved following the line of argument of Ref. 19. 
By a suitable modular transformation (2.15), i.e., a change of basis 
(~Ol, m2), the system of frustrations {nl, r/2} may take the form {Inll /x In2[ 
sgn(nln2), 0} (a A b denotes the greatest common divisor of a and b, and 
by convention a/~ 0 = a). Connectivity and non-self-intersection of ~ then 
guarantee In~l /x ]n2[- - -1 .  Property (ii) follows, since in the basis that 
makes ~ trivial (frustration = { -t-_ 1, 0}), ~ '  may only be { _+ 1, 0}. 

Fig. 3. Two coexisting polygons on the torus. They define the same set of frustrations, 
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For a given configuration in (3.2), the frustrations then read 

0 ~ 1  = 7~/'/1 E g i '  a~02 = 7rn2 ~', ei (3.7) 

In this expression, the sum is taken over all polygons nonhomotopic to a 
point. Because of (ii), these are homotopic and thus define the same 
frustrations n tn  and n27r, up to a sign depending on their orientation, 
%= _1. By convention, %=1 corresponds, say, to n l > 0 ,  or n 2 > 0  if 
n I =0.  Since In1] and [n2l are coprimes, one has 

[&p,I 1~r 
E <  = • ~ - -  7~ 7~ 

the sign depending on the topology of the basic polygon. In any case 

( %1) 
COSTre O E ~ i = C O S  ~ e  0 7r 

One can then get ~e n by multiplying the SOS weight by the term (3.8). 
Since 

c o s T r e o K % = I ]  ~ ei~e~ n ~6 
{el= + l }  i ~i = • 

we find the desired weight for each polygon nonhomotopic to a point. 
Because of the modular transformations of the frustrations, this procedure 
does not depend on the choice of o l ,  (o2. We thus find that the continuum 
limit of Y', at criticality is 

Y'n --* Z ig ,  e0] = ~ ZM,M(g/4) cos(TceoM' /x M) (3.9) 
M ' , M  ~ 7~ 

which is clearly modular-invariant. 

3. We now check (3.9) using some known results. For n = 2, eo = 0, 
and (3.9) is correct by construction. For  n = 1, e0 = 1/3. The sum in (3.9) 
can be decomposed on the different congruence classes of M' /x  M rood 6, 

2 g, = E + -  E E 
M'A M = O m o d 6  2 M 'A  M = l , 5 m o d 6  M' A M = 2 , 4 m o d  6 

(3.1o) 
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Then one has 

ZM',M = ~ ZM' M = Zc[g/4, 63/6 
M '  A M = O m o d  6 M ' , M E 6 Z  

ZM, M= Zc[g/4, 3 ] / 3 -  Z~[g/4, 6]/6 
M '  /x M = 3  m o d  6 

2 
M '  A M = 2 , 4  m o d  6 

2 
M '  A M ~  1 , 5 m o d 6  

ZM' M = ZcEg/4, 23/2 -- Z~Eg/4, 63/6 

ZM. ~ = ZcEg/4, 1] - Zc[g/4, 2]/2 

- Zc[g/4, 3]/3 + Z~Eg/4, 6]/6 

(3.11) 

Thus 

Z i g ,  1/3] = (Zc[g/4, 6] - Z~[g/4, 3] - Z~.[g/4, 2] + Z~[g/4, 1])/2 

(3.12) 

for n = 1, g = 4/3 and the symmetries (2.23) leave simply 

2[4/3 ,  1/3] = (Zc[4/3, 3 ] -  Z~[4/3, 1])/2 (3.13) 

This is exactly the expression for the partition function of the Ising model, 
as demonstrated in Ref. 11 (see also the Appendix). 

For  n = 0, e0 = 1/2, and one finds in a similar way 

Z i g ,  1/2] = (Z~[g, 2 ] - Z ~ [ g ,  1])/2 (3.14) 

The relevant value of g is 3/2, and one has 

2[3 /2 ,  1/2] = (Zc[-3/2, 2] - Zc[3/2, 1])/2 = 1 (3.15) 

by Euler's identity. This agrees (11) with the well-known result ~en=o= 1, 
(3.2). 

4. We turn now to the case of an arbitrary value of n. Then, Z may 
not be expressed as a sum of a finite number of Coulombic partition 
functions (at least for e0 irrational). We calculated instead (3.9) term by 
term in the M summation. For  M = 0, M' /x  M = M', and the sum over M' 
can be recast using the Poisson formula into 

- -  . + 2 p 2  4 1 1 ~ (q~t)~eo ) /g~-"~ Z (qO) Ae~176 
@ e+z q~l p~z 

(3.16) 
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It gives of course the correct small-q behavior (qq)--c/24, C given by (2.24), 
(3.6). For M =  +1, M' /x  M =  1 and one gets in the same way 

2 cos ~reo ~ q~2e, l/2~]J2",~/2 (3.17) 
q# P~z 

Recalling that the dimension of the spin S operator (in the c theory) is 
given by (5) 

xHI = ~ m = 2g 

c - 1  
= 2Ao,1/2-t 12 (3.18) 

we get by (3.17) the correct degeneracy 2 cos zreo=n expected for S. 
For M =  _+2, M' /x  M can be either 1 or 2 and the corresponding 

contribution to Z reads 

1 [ 2 c o s  ~e 0 ~ qA2e,,(~32e,~+ (COS 2~ o cos~zeo) ~ qAP,'c~ Je,1] (3.19) 
qt] e~z p~z 

while for M =  _+3 one has 

1 I2  cos roe0 ~ q~2~,3/2~J2p,3/2 
~lq p~z 

+-~ (cos 3~eo -  cos ~eo) ~ q~2,/3.z/2~2p/3.3/~ (3.20) 
P~2~ 

More generally, each M generates terms as q~2e/N,M/2, where P/x N = 1 and 
N divides M, the prefactors of which can be expressed as polynomials (of 
degree M) in n, and which depend on the factorization of M into prime 
integers. 

In a Coulomb gas language the charge content is clear: the magnetic 
charges m = M/2 are fixed by the model as multiples of 1/2, and for a given 
m, one has all possible electric charges e such that the spin em is integer. In 
(3.5), only e e 2 2  was observed, as a direct consequence of duality 
invariance, which is broken here because of the introduction of e0, (3.9). 

One can then write general form for the continuum limit of ~e,  

'{L ~ ,  --, 2 [ g ,  eo] =~-~ (qq)~o+2e, o 

l + ~ ~ A(M,  N) q~2P/U'M/2gI~2"/N'M/2 (3.21) 

P A N = I  
N/M 
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The coefficients A ( M ,  N )  are constructed in the following way. First we 
decompose M and N into prime integers (recall N divides M) 

M = p ~ ' . . ,  p~k (3.22) 

N =  p{' "'" pk ~k, fll ~< a, ,..., fik ~< ~k 

and we introduce a contracted expression 

(cos ~eop~ 1 . . . .  ~k ) /- 'k c 

= ~ (_l)X6, cos~eop~ 6,. p~k--Sk (3.23) 
{0~< 6i~<inf(yi,1)} 

Then one has 

A ( M ,  N ) =  ~ (cos ~zeop~ L �9 p~k)c (3.24) {~,:z~< 7, < ~) p ~  . . .  p~k 

In the general case when eo and g are irrational, A2P/N,M/2 ~--ZJ2P,/N,M,/2 only 
if (P, N, M ) =  ( + P ' ,  N', M'). There are thus no degeneracies which could 
simplify (3.21). 

We now turn to the operator content of (3.21). For c given by (3.6), 
the degenerate operators r have conformal weights obeying the Kac for- 
mula 

h, . ,= [ ( g r -  s) 2 -  ( g -  1)2]/4g (3.25) 

r, s are nonzero integers of the same sign, while h is obtained as 

h = A - e~/4g = A + (c - 1)/24 (3.26) 

The first terms in (3.21) involve A eo + 2s.o and for P < 0, they correspond by 
(3.26) to hl,l_Zp. This gives exactly the thermal series of Dotsenko and 
Fateev, (5) i.e., the dimensions of operators generated in the short-distance 
expansion of the product of several energy operators 

X T L = 2 h l A + 2 L  = - 2 L + 2 L ( L +  1)/g, L>~ 1 (3.27) 

One verifies in particular (4~ 

XTI = 2 -- 1Iv = --2 + 4/g (3.28) 

For M o d d =  2 L +  1, P = 0 ,  the dimensions Ao,L+ 1/2 describe in the 
same way the magnetic series of Refs. 5 and 20, 

X H L = ~ g ( 2 L + I ) 2 - - ( g - - 1 ) 2 / 2 g ,  L > ~ I  (3.29) 
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These dimensions as well as the other ZJ2P/N,L+l/2 correspond to non- 
degenerate operators for g irrational. For  M even = 2L, P = 0, the dimen- 
sions A0,c correspond to other thermal operators, identified in Ref. 20, 

2 r  L = l g L  2 _ ( g  _ 1)2/2g, L >~ 1 (3.30) 

which are also nondegenerate. The A2p/N,L a r e  also nondegenerate, except 
for N =  1, P < 0 .  In this case A_2e, L corresponds using (3.26) to hL,_2e.  

The characters of the corresponding Virasoro algebra are defined by 

Zh = qh--c/24 2 D K q  x (3.31) 

where D x  is the number of independent secondary fields at level K. If 
h r h .... )~h reads simply 

qh - c/24 q~J 
(3.32) 

Zh--I--[N= 1 -  ~ (1--qN) rl(q) 

while(11) 

qhr,,- c/24 __ qhr,-,-- c/24 

Zhr,,- I ]~=1  (1--qN) (3.33) 

It is thus clear that (3.21) can be written as a quadratic form 

2 [ g ,  eo] = ~ Rh,hZhZ% 
h,h 

(3.34) 

Except for n = 2, 1, 0, the Rhh can be noninteger. In particular, the factor R 
corresponding to the spin operator is simply n, which becomes negative for 
n < 0. In fact, as soon as n < 2, some of the R become negative, for instance, 
the prefactor associated with A2P/3,3/2 , which is 

2(cos 3zteo - cos 7Zeo) = n(n - 2)(n + 2)/3 

In the standard statistical mechanics models, the Rh~ must be positive 
integers: this is because Y" is obtained as the trace of the power of a certain 
transfer matrix. The expression (3.34) shows that there is no transfer matrix 
for the O(n) ,  n e ~  model whose trace allows one to close the cylinder into 
a torus. Indeed, the matrices introduced so far (2~ work in a nonsymmetric 
way, a special role being played by the "left part" of the strip where some 
connectivities between bonds of (3.2) are defined. 

Finally, we want to discuss the dependence on n of the R in (3.34). We 
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consider for simplicity the spinless primary operators only. Then, the first 
terms read 

n 2 + n - 1  n 3 - n  
n(qgl) ~~ -t 2 (q~])~o,l -/- ~ (q~)Ao,3/2 

3n2 +~ (q~])~0,2+ ... (3.35) 
+ 4 

It is very tempting to identify the polynomials in (3.35) with dimensions of 
the irreducible representations of the O(n) group, but this works only for 
the first (vector representation S ~) and the second term (symmetric 
traceless tensor S"V). The other terms are not these dimensions, nor com- 
binations with positive integer coefficients. This in fact is not surprising, 
since (3.35) is valid for three integer values of n only (n = 0, 1, 2). We can- 
not expect that the analytic continuation fixes all the polynomials, but only 
those of degree one and two. We notice that in the low-temperature phase 
of (3.2), which is also critical, renormalizing onto (2.1) with g given by 
another branch of (3.3), the prefactor of the spin operator in (3.35) is still 
n. This shows the limits of the analogy with Goldstone modes (see Ref. 21 
and references therein), in which one would expect instead n -  1. 

5. When g is rational, many cancellations can simplify the expression 
(3.21), as is observed for n = 0, 1, 2. It seems, however, quite difficult to 
write down explicit expressions. Only for n =  -1 ,  - 2  have we obtained 
simple results, 

Zr_ l  ---, (Zc[5/3, 3 /2 ]  - Zc [5 /3 ,  1 / 2 ] ) / 2  

5e_2 ~ Zc[2, 1 ] -  Zc[2, 1/2] =0 
(3.36) 

This last result deserves some comment. 
To obtain a nontrivial result for ~e2 ,  we have to take the derivative 

of Z[-g, Co] with respect to n at the point n = -2 .  The only nonvanishing 
term is 

~gO 
On 8g (Zc[g, 1 ] - ZcEg, 1/2] )g =2 (3.37) 

i.e., up to a multiplicative constant 

'r I + m2/2 ( )em,2  338' 
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Using the Jacobi identity 

1 oo 3 

~ p ~  (--I)P (2P+I)q(p2+p)/2=[NH=I (1--qN)] (3.39) 

one gets finally 

8 ~ n  n= ~.i~/2~2 (3.40) 
~n -2 

The normalization is chosen such that the identity operator is non- 
degenerate. Equation (3.40) is the renormalized value of det A on the torus. 
This result agrees with arguments of Parisi and Sourlas (22) that n = - 2  is a 
free fermionic theory with action 

ed = f ~ 3~ dS (3.41) 

where ~ (~) are two independent Grassmannian fields. Equation (3.40) can 
also be related to the counting of Hamiltonian graphs on the Manhattan 
lattice. (23) 

We note also that for g=p/p', c= 1-6(p-p')2/pp ', (3.21) does not 
give any of the minimal partition functions for unitary models (except for 
n = 0, 1). This is easily seen, since in the expansion (3.34), the identity has a 
prefactor one, while the spin has the prefactor n = - 2  cos(pip') r N. 

6. A quite interesting physical case is the limit n --* 0, which is known 
to describe polymers. (24) Here, following (3.3), g=3 /2 .  The object 
2[3/2, e] is then the continuum limit of the generating function 

G =  ~ (2cos~e)~P/~ -~B (3.42) 
graphs 

the graphs being formed by ~A7 e polygons nonhomotopic to a point and 
# = Tc (n = 0) is the connectivity constant for self-avoiding walks on the 
lattice. In a similar way, the derivative (O/On)Z(g, eo) is the limit of the 
generating function 

G =  Z /~-~B (3.43) 
graphs 

the sum being taken over all configurations with one single polygon on the 
torus [(Sg/Sn) 8Z/Sg selects only those where the polygon is homotopic to 
a point, and (Seo/Sn)8Z/Seo those where it is not]. 
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4. PARTITION FUNCTIONS OF CRITICAL Q-STATE POTTS 
MODELS (QE[~) ON A TORUS 

1. We turn now to the same study for the Potts model, defined 
initially for Q integer on, say, the square lattice 5O by the action (25~ 

a g - - I  y. 6~,~ (4.1) 
T<j~> 

(a = 1 ..... Q), The analytic continuation to Q �9 R is obtained using the high- 
temperature expansion 

~o= ~ (e~/T-1)YBQ ~c (4.2) 
graphs 

where the graphs are obtained by putting ~#B bonds on the edges of the lat- 
tice, which form .Arc clusters, i.e., connected components (including isolated 
points). Equation (4.2) is more easily handled using a polygon decom- 
position of the surrounding lattice y,(25) here another square lattice (see 
Fig. 4). If ~L is the number of loops in a given graph of (4.2) and JIr s the 
total number of sites in 5 ~ then by Euler's relation 

xL = xB + x c -  ~ 

In a plane the number @ of polygons on 5 p reads 

(4.3) 

~p = JV'L + ;tic (4.4) 

Hence (4.2) can be rewritten as 

~Q =_ QsS/2 Z [( el /T- 1) Q-,/2]~B Q~p/2 (4.5) 
graphs 

Model (4.5) is known to have a second-order phase transition for 
Q � 9  [0 ,4] ,  the critical temperature being such that (e l /r-1)Q-1/2=l .  
One then transforms (4.5) in the same way as for the O(n) model by con- 
sidering a polygon arbitrarily oriented as a wall between two regions of 
constant height differing by +_~o o. With a factor e iu (e -iu) for each left 
(right) turn one has, in the plane ~Q = ~sos if QI/2 = 2 cos 4u. The choice (4) 
(P0 = re/2 leads to the renormatized coupling g such that 

Q = 2 + 2 cos(~g/2), g �9 [2, 4] (4.6) 

2. As before, Zc[g/4, 1] is the continuum limit of a modified model 
~Q defined as in (4.5) but with a factor 2 for each polygon nonhomotopic 
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Fig. 4. A typical graph in the high-temperature expansion of Y'Q, (4.2), and its alternative 
polygon representation. After arbitrary orientation, the polygons are considered as walls 
between regions of constant height in a solid-on-solid model. 

to a point. (11) On a strip, this is easily repaired by putting charges _+e o at 
infinity such that QI/2 = 2 cos[0z/2) %],  resulting in 

e0 = + ( 2  - g / 2 )  m o d  4 

c = 1 - 6(2 - g/2)Z/g 
(4.7) 

To give the correct weights to all polygons on the torus one has to consider 
the same object Zig, %], (3.9), as for the O(n) model, with e0, g defined 
by (4.6), (4.7). This, however, does not yet describe the original Potts 
model (4.2). Indeed, on the torus, although (4.3) remains valid, (4.4) can be 
violated when a cluster has a "cross topology," i.e., winds around (at least) 
two independent noncontractible cycles of the torus (Fig. 5), in which case 
JVL + .Arc- -@ = 2. Equation (4.5) gives to such graphs the relative weight 
1, while it should be Q. We thus have to add to Zig, %] a factor ( Q -  1) 
times the partition function restricted to clusters with cross topology. These 
are easily selected by giving a weight 0 to each polygon nonhomotopic to a 
point, i.e., by adding a charge e; = 1. The remaining configurations contain 
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I 

Fig. 5. Schematic representation of a cluster with "cross topology," 

a cross cluster of either occupied or empty bonds. Since these two classes 
are in a one-to-one correspondence by duality, we avoid double counting 
by a factor 1/2. We get finally 

2'~Q~2[g, eo]+�89 1 ] -Z~[g ,  1/2]) (4.8) 

One recovers from (4.8) the correct results for Q = 1, 2, 3 (see the Appen- 
dix). For  Q = 4 it gives 

~4 --* (3Zc[4, 1] - Zcl-4, 1/2])/2 (4.9) 

in agreement with the work of Yang/12) 

3. The same general comments are valid here as for the O(n) model, 
and we simply make explicit the operator content of (4.8). The Kac 
formula reads 

hrs = [ ( 4 r -  gs) 2 - (4 - g)2]/16g (4.10) 

while 

h= A + ( c -  1)/24 (4.11) 

The first term of 2 involves Aeo+ae,o. For  P>~0, it corresponds to 
using (4.11) to he+ 1,1, i.e., the thermal series of Dotensko and Fateev, (sl 

XT-L = 2hL+1,1 = - L + 2 L ( L + 2 ) / g ,  L~> 1 (4.12) 

One verifies in particular (4) 

Xr~ = --1 + 6/g (4.13) 

The spinless primary operators labeled by Ao,~,/2 describe the "hull dimen- 
sions" recently introduced in Res 26. The additional term in (4.8) contains 
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in particular in the zero magnetic charge (m = 0) sector the operators with 
AzL-1.o, which correspond to the magnetic series of Dotsenko and Fateev, 

( 2 L -  1) 2 (2--g/2) 2 
X~L = 2g 2g (4.14) 

The prefactors are all equal to Q -  1, in agreement with the symmetry 
of the model. 

4. Our construction is also valid for the tricritical Potts model, 
known (27~ to renormalize onto (2.1) with g given by another branch of 
(4.7), g e  [4, 6]. For the case Q = 3  (eo=�89 one finds from (4.8) 

~ 3 - + ~ ( Z c I 4 , 2 1 - Z c [  4 , 1 ] - Z , . I 4 , 3 ] + Z , , [ 4 , 6 ] )  (4.15) 

The critical model corresponds to g = 10/3, the tricritical one to g = 14/3. 
Hence 

~.3(critical)--+l (Z,. [ ~ ,  13-Z,.[l~O3,~]-Z,.[1-~-~,33+Z,.[l~O 3 , 3] )  

(4.16) 

while 

3(3(tricritical)--+l(z,.I3,11-Z,.II-~43 ,~]-Z,.[1---~,~l+Z,.I1---~ 
(4.17) 

which are easily seen to coincide with the corresponding expressions for the 
unitary minimal conformal theories (see the Appendix). 

5. C O N C L U S I O N  

We have thus shown how the Coulomb gas mapping of the O(n) and 
Q-state Potts models allows an explicit calculation of their partition 
function on the torus. This procedure is an alternative to the systematic 
search for modular-invariant partition functions. Formulas collected in the 
Appendix suggest that a similar construction is possible for other models, 
such as those classified in Ref. 10 and constructed in Ref. 28. We hope that 
this procedure can be extended to the derivation of the correlation 
functions on the torus, as well as the calculation of partition functions on 
surfaces of higher genus. 

An intriguing feature is that in all conformal theories considered so 
far, the partition functions may be expressed as linear combinations of 
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functional integrals over free boson fields, with various types of boundary 
conditions. This extends to models with c > 1, where several boson fields 
are necessary. We intend to return to these questions in a later publication. 

A P P E N D I X  

In this Appendix, we show how all the partition functions of minimal 
conformal theories classified in Ref. 10 may be reexpressed in terms of 
Coulombic partition functions. 

We recall that minimal conformal theories have a central charge 

c = 1 -- 6(p - p,)2/pp, (A.1) 

with p, p' two coprime integers, and involve a finite number of primary 
fields, of conformal dimensions h and / i  given by Kac's formula: 

(rp -- sp')2-- (p-- p') 2 
h,~ = (A.2) 

4pp' 

with the constraint 

l < ~ r ~ p ' - l ,  l<~s<<.p-1 (A.3) 

We also recall that the most general modular invariant of the form (1.2) 
constructed with the conformal characters pertaining to representations 
(A.2)-(A.3) is a linear combination of contributions associated with the 
various possible factorizations of p and p,.(10,19) It turns out that in all the 
invariants with positive coefficients Nh, q in (1.2), one of these two numbers, 
say p, factorizes trivially as p = 1 x p, while the variety of invariants comes 
from factorizations of the other as p' = P'I P~. We denote the corresponding 
invariant 

Zp~ • p~ 

and refer to Ref. 10 for its explicit construction. In Ref. 11, it was 
also proved that each such term may be written as a difference of two 
Coulombic partition functions defined in (2.16): 

Z(P~• ' (PP'2 1 ) - zc (PP ' I  1)] \P'2 ' (A.4) 

It is then an easy matter to transcribe all the physical invariants listed 
in Ref. 10 in terms of Coulombic functions: 
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